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ABSTRACT 

Using combinatorial methods, we classify all birational morphisms blowing 
m ~ 5 divisors down to a point. Those which do not factor through the blowing 
up of a point are treated in the body of the paper, and the factorizable 
morphisms are computed in an appendix. The relevance of this classification to 
~he determination of the nature of the "'general" toric morphism is discussed: 

Introduction 

In this work, we use combinatorial methods to prove a classification result in 

algebraic geometry,  which provides evidence for a more general conjecture. This 

result concerns toroidal morphisms between toroidal schemes. In recent years, 

toroidai schemes have proven their value as a testing ground for investigating the 

behavior of varieties under birational morphism. They are currently a prime tool 

for testing strategies to solve the related problems of factorizations and minimal 

models in 3-folds. In order  to extrapolate the general behavior  of these 

morphisms, we have undertaken the classification of non-factorizable morphisms 

in the important  special case where the exceptional locus collapses to a point, but 

the morphism does not factor through the blowing up of that point. We actually 

classify the Farey graphs of toric morphisms, with not more than five interval 

vertices. Combining these results with a computat ion of the number  of such 

graphs which can be "factorized" by a series of "blowing up",  we have grounds 

to a conjecture that the "general"  toric graph with n vertices cannot be so 

factored. 

The graphs we treat will be triangularizations of a basic triangle or0 in R 3 with 

vertices El, E2 and E3. It is convenient to take El----(1,0,0), E2 = (0, 1,0), 

E3 = (0, 0, 1). Each point r = xEt + yE2 + zE3 with x + y + z = 1 will be assigned 
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affine coordinates (x, y, z). Given a triangularization of 0"o we will denote a 

subtriangle whose vertices are R1, R2 and R3 by A(R1, R2, R3). 

DEFINITION. A triangularization of the basic triangle will be called a Farey 

graph if all the vertices have rational coordinates, and for each subtriangle 

A(R1, R2, R3), the determinant of the three coordinate vectors is -+ 1/dld2d3, 

where d~ is the lowest common denominator of the coordinates of R. We will 

write P, = d,R~ for i = 1,2, 3. P, has integral coordinates and the determinant of 

the three coordinate vectors P,, P2, P3 is 1. 

The results and methods of this paper are combinatorial, involving the 

enumerations of certain types of Farey graphs. However, since the significance 

of this enumeration lies in algebraic geometry, we will pause briefly to describe 

the algebro-geometric object associated to each Farey graph. It will be a toric 

scheme X and a birational toric morphism f:  X - - ~ A  3. 

To each subtriangle o- = A(R1, R2, R3) we associate a copy X = X~ of affine 

three space with coordinates t,, t2, t3. We regard A(R,, R2, R3) as the dual graph 

of the configuration of coordinate planes in this space. Each vertex Ri corres- 

ponds to the plane {ti = 0}, each edge [R~, Rj] corresponds to the axis {t~ = tj = 0} 

and the interior of the simplex corresponds to the origin {t~ = t2 = t3 = 0}. Since 

the correspondence is a dual one, dimensions and inclusions are reversed. 

If 0-o is the basic triangle A(E~, E2, E3) with coordinate functions Xl, x2, x3 and 
t~, t~, t3 are the affine coordinates of A(R~,R2, R3), w e  have a mapping 

f: X~--* X~o as follows: 
d,R~ = p~ - - (a i ,  b~, ci) is the minimal integral vector in the direction of R2. 

We set 

x l = t ~ ' t ~ 2 t 3  ~, x z =  t~ ' t~t~ 3, x3=t~' t~t~3 3. 

Since, by the definition of a Farey graph, the matrix of exponents has 

determinant +-1, this matrix has an integral inverse and thus f / / :  X=,,--> X~ is a 

rational map of the form 

t, = xa 'y~ 'z  :', t2 = xa2y~2z :2, t3 -~ xa3y~3z/~, 

where the exponents are integral but may be negative, f~/ is well defined 

whenever xl, x2 and x3 are all non-zero and maps this set U~,, isomorphically to 

open set Uo of X, on which all the t, are non-zero. By composing this 

isomorphism we get birational correspondences among all the Xo. 

We now wish to glue the X~'s together in a way compatible with the 

morphisms to get X, so that each vertex of the original Farey graph will 
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correspond to a unique divisor of the glued scheme. We consider a second 

subtriangle or' = (R1, R:, R4) which shares a common edge with tr. Since R4 lies 

on the side of [R~, R:] opposite to Rs, we have 

d3R3 = oll( d~Rl) + a2( d2R2) + o~4(d4R4), 

with a4 negative. If A is the matrix of exponents defining f~ and A '  is the matrix 

of exponents defining f~,, a simple substitution of the formulae for f~ in those for 

f2! shows that the correspondence fS!f  is given by the integral matrix of 

exponents A '  1. A. Since the columns of A are simple combinations of the 

columns of A' ,  we obtain the formulae 

t~ = fit~ l, t; = t2 t f  , t'4 = t3 4. 

The c~ must therefore be integers, and by the symmetry between ~ and tr' we 

conclude that a4 = - 1 ,  i.e. that 

t~ = t31.  

Thus X~ - {t3 = ~ 0}- - - )  Xo,-{t4 = 0}.  When the two spaces are glued together on 

this open set, the t3 and t~ axis map to the same P~. The sets {ti = 0} and {t'~ = 0} 

for i -- 1, 2 map to the same irreducible divisors in the glued space intersecting 

along that P'.  Thus F, the union of the subtriangles, is still the dual graph of the 

system of special divisors. When all the X~ are glued together in this manner, we 

obtain a 3-fold Xr together with a regular fr: Xr--~ X~,o. 

An algebraic variety X is a toric variety if each x in X has a neighborhood U 

such that U = Spec K[~O Cl M] where M is a free Z-module and 4  ̀ is a cone in 

the vector space Mo = M @ Q and 

EXAMPLE. A" is a toric variety with M = Z" and g' = {(q, . . . . .  q.), q~ =0}. A 

toric birational morphism between toric varieties is a morphism f: X---> Y such 

that the lifting of a local coordinate in Y is a monomial in the local coordinates 

in X. 

For the 3-dimensional case we can associate uniquely to each such morphism 

[: X--~A 3 a Farey graph (Section III). 

fr: Xr --~ X~ is toric and the two associations are invertible to each other. 

We will prove the following result: 

THEOREM. If]r: Xr--> X~,, is a toroidal morphism collapsing a divisor with less 
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than or equal to five irreducible components to a point, such that fr does not factor 
through the blowing up of that point, then fr is 

(i) the unique known non-factorizable morphism collapsing 4 components to a 
point, illustrated by F~ in Section IV, 
o r  

(ii) a blowing up of the morphism in (i), 
o r  

(iii) one of the morphisms represented by the graphs F2 and F3 in Section IV. 

REMARK. If the number of irreducible components of the divisor is 2 or 3, SF 

is always factorizable (see Schaps [2], [3]). If it is 4, there is only one such map 

(Schaps [4]). The technique of describing will provide, with now extra effort, 

another proof that in the toroidal case for m = 2, 3 there are no such morphisms 

and for m = 4 there is only one. 

We will take the following steps: 

I. Describe a Farey graph. 

II. State a list of properties of Farey graphs. 

III. Describe how to associate a graph to toric birational morphism and 

special properties of such graphs. 

IV. Prove the graphical version of the classification theorem. 

I. Definitions 

A Farey graph is a set of vertexes and edges. The vertexes are triple points in 

{(x, y, z) lx ,  y, z E Q, x + y + z = 1} and the edges are a set of lines connecting 

some pairs of vertexes. The edges form a subdivision into triangles of the basic 
triangle whose vertexes are (1,0,0), (0,1,0), (0,0,1). We shall refer to each 

vertex by the integral coordinates induced from the original ones by multiplying 
by a smallest positive integer. 

Each subtriangle A(p ,  P2,/93) satisfies det(P~, Pz,/93) = (P~ × P2)" P3 = + 1. I F] 

will denote the underlying space. 

If Pt and P2 are vertexes, the line between them P~P2 will be called primitive if 

it is an edge in the graph. Pt and P2 will then be called neighbors. A triangle 

A(PI, P2, P3) will be called primitive if it is not divided into other triangles. Given 

3 vertexes, P~, P2, P3, they define a triangle (even if it is not in the graph). The 

triangle has 3 kinds of points: 3 vertexes P~, P2, P3, edge points, i.e., points which 
are on the line segments between the vertexes and internal points of A. Two 

vertexes will be called primes if the coordinates of their vector multiplication has 
no common multiple. 
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The weight (a, b, c), denoted w(a, b, c), is a + b + c. 

GRAPHICAL ALGORITHM: Completion of a subset of a Farey graph 
When we have a subset of a Farey graph which includes all the vertexes we can 

add more edges by the following process: Take an existing edge. Find a vertex so 

that if you "draw edges from the original edge to that vertex you get a primitive 

triangle. If such a vertex is unique, add the graphical edges. Apply this process to 

all possible edges. 

II. Properties of Farey graphs 

Let F be a Farey graph, P~, P2, 1°3 vertices. For any points P and Q in the 

triangle we denote the line between them by PQ even if it is not an edge. 

PROPOSITION 1. (1) I f  P2 and P2 are neighbors then they are prime. 

(2) I f  P~ and P2 are primes then any point on the line between them is a positive 

integral combination of them. 

(3) A n  internal point of a primitive triangle is a strictly positive integral 

combination of the 3 vertexes of the triangle. 

PROOF. The second and third claims follow from properties of lattices. For 

the first claim take the primitive triangle that leans on the edge P~P2. Call its 

third vertex P3, then det(P~ × P2" P3)= -+ 1. Hence P~ × P2 has no common 

multiple. So they are prime. Q.E.D. 

The following proposition is a very technical one. It will be used in the proof of 

the main result. 

PROPOSITION 2. (1) I f  P~ and P2 are primes and if the point P, + P2 is on an 

edge which is strictly contained in P~P2, then P~ + Pz is a vertex. 

(2) Let P~, P2, P3 be such that det(P~ x Pz" P3) = -+ 1. P~P~ and P2P3 are 

primitive and Q a vertex in the interior of the triangle A(P~, P2, P3). 

I f  P~P2 is primitive or there are no more edges from P3 between P~P3 and P2P3 

that end out of the interior of the triangle, then P~ + P2 + P3 is a vertex or P3P~ + P2 

is an edge. 

PROOF. (1) Let Q1 and Q2 be the vertexes of the edge on which P1 + P2 is a 

point. By the above proposition P~+Pz = aQ~+bQ2, a,b >-0. But Q~ = 

c,P~ + d, P2, i = 1, 2, c~, d~ ~> 0. Therefore 

P, + P2 = (ac, + bc2)P~ + (ad, + bd2)P2. 
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Then a = 0  or b =0 .  Without loss of generality a =0 ,  so b = 1 and c2 = 1, 

d2 = 1 :::> Q2 = PI + P2 :ff Pl + P2 is a vertex. 
(2) Let T be a primitive triangle to which P, + P2 + P3 belongs. It cannot have 

an internal point of A(P1, P2, e3) as a vertex because its weight in PI, P2, 1°3 would 

be bigger than that of P~ + P2 + P3 (which has the minimum weight of all the 

internal points of A(Po, P2, P3)). Since P3P~ and P3P2 are primitive, P3 must be a 

vertex of T. The other two vertexes are either on PIP2 or outside of T. By the 

assumptions of the lemma this is impossible. So P~ + P2 + P3 is an edge point of 
T. 

For the same reasons as before this edge must have P3 as an end vertex. The 

other end vertex cannot be an internal point of A = A(p,  P2, P3) and not outside 

of P (by the assumptions), so it is on P~P2. It then must be P~ + P2. So PaPa + P2 is 

an edge. Q.E.D. 

III. Correspondence between birational toric morphism and Farey graphs 

Let f:  X--> A 3 be a toric birational morphism collapsing a divisor with normal 

crossing to a point y. Let x', y', z '  be local coordinates centered at x,. Let x, y, z 

be its lifting to X. Let D~ be a component of the exceptional divisor, and t~ a local 

equation of D. Then locally x = tT'f, y = t~'g, z = tT'h. 

Form the following Farey graphs: The vertexes are (1,0,0), (0,1,0), (0,0,1) 

which stand for the strict preimages of the coordinate planes, and {(a~, b~, c~)}?=l 

obtained from {D~}~%1, the set of components of the exceptional divisor. Two 

vertexes are connected by an edge if the corresponding hypersurfaces intersect. 

Three hypersurfaces intersect in a point and form a subtriangle with det = ___ 1. 

Let f~: X---> A 3 and f2: Y---> A3 be represented by two graphs F~ and F2. P will 

denote the graph of XxA3 Y--->A 3. If FICF2 then there is a well defined 

morphism f :  X---~ Y that creates a commutative diagram. If f is not well defined 

then there is an edge in F~ which is not in F2 and an edge in F2 which is not in Ft. 

Both lines appear in P (not as primitive lines) and intersect in a vertex (Teicher 

[5], II.6). 

PROPOSn-IoN (proof omitted). Let  J be a test curve in Y (for definitions see 

Schaps [3]) with equation: 

x = ah ~ +.  • . ,  y = flh b + . .  ", z = 3A c + .. ", h a parameter. 

Let  x be its closure point in X, x E D~ fq D2. D, is represented by (a~, b~, c~). 

III.4. Then a>-_a~+a2, b>=b~+b2, c>=cl+c2. 

III.5. I f  x ~ D~ and (a~, b~, c~) <~ (a, b, c), then (a, b, c)  is not a vertex. 
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EXAMPLES. 

(1) F =  B low up of  a po in t  

(2) f = B low up of a l ine 

(o,o, 1) 

(I,o,o)/1' l ~ ~ ~  (o, 1,o) 
(o,o, 1) 

/ k  
(1oo)/ J ~(ol,o) 

(1 I o) 

IV. Theorem 

Let f: X---~A 3 be a toric birational morphism collapsing m surfaces meeting 

normally to a point. Let g: Y--~ A 3 be the blowing-up of the point. Let ]:l be the 

induced birational correspondence f~: X--~ Y. Assume that f~ is not well-d(fined. 

Then m ~ 4. If  m = 4, then the corresponding graph of f is of the form : 

FI 

(0,0, t) 

(1,0,0) ~'/~(2, l, 1 ~  (0,1,0) 

If  m = 5, then the corresponding graph of f is one of the following: 

F; :  Blow up of a triangle or an edge in F~ that will not add lines crossing the 

line segment between (2, 1, 1) and (1, 1, 1); (14 graphs). 

F .  . . . . .  F~6:Blow up of a triangle or an edge in FI that will add a line crossing 
the line segment between (2, 1, 1) and (1, 1, 1). 

F2 

(o,o, 1) 

~2(2,1, I ~ ) ~ L ~  
/ / / / ' /  (2 .2 ,1)~ \ (i, o,o) ~ -'-~ (o, 1,o) 
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F~ 

(o,0,1) 

/ ~ '  \ 

/11 ,/ i ' 
(2. l,2)t t 
6i, 2, 3 ) ~ (  1.1,1} ,, 

fi/~-~(3, 2 2) "x 
/2</5 / (2, L ~ ~ ' - ~ , ,  

(o, 1 , o ) /~ /  " - ' ~  (I.o,o) 

or mirror images o f  the above graphs. 

PROOF. We want to classify the graphs F that correspond to such f's. We 

shall introduce a series of claims and arguments. In each step we shall draw a 

subset of a graph assured to be included in the graph by the preceding argument. 

CLAIM 1. One of  the lines (1,0,0),(1,1,1) (0,1,0),(1,1,1) (0,0,1),(1,1,1) is 

not complete in F and there is an edge F that crosses it there. 

PROOF. Denote the graph of g by F b. (F b appears in Example (1) in Section 

III.) f~ is not well defined. Therefore Fb~ F. So one of the lines is not complete in 
F. Furthermore, by Section III there is an edge F that crosses it there. Q.E.D. 

Without  loss o f  generality assume that (1, 0, 0), (1, 1, 1) is not complete in F and 

there is a F that crosses it there. 

CLAIM 2. (1, 1, 1) is a vertex and so is (2, 1, 1). 

PROOF. Let M ( -~ P~) be the blow-up of the point. From lemma 1.2 of Schaps 

[4], there is a divisor D~ in X generically isomorphic via 1"1 to M. Therefore Dt 
will be denoted by (1, 1, 1). 

Take the following test curve in Y: x = at 2, y = bt, z = ct. Let x be the closure 

point in X. If x is in Dt and not in Di for i #  1, then by II.4 D2 with coordinates 

(2, 1, 1) is not a vertex and ft is an isomorphism around x. Therefore part of the 
line segment (1,0, 0), (1, 1, 1) around (2, 1, 1) is in F. (2, 1, 1) is not a vertex so 

(1,0, 0), (1, 1, 1) is an edge. Contradiction. Therefore x is not in D1, and so by II.3 

x is in D2 so (2, 1, 1) is a vertex. Q.E.D. 

~ ,1) 7\ 
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CLAIM 3. There are edges of the sort (1,0,0),(r, 1, 1), (0, 1,0),(1, k, 1), 

(0,0, 1), (1, 1,/), r , k , l > - i .  

PROOF. Take a sequence of test curves of the kind at"', bt, ct, ni ~ 2. We shall 

get a sequence of closure points (r, 1, 1), r~ _-< n~ or an edge (1,0,0),(n,,1,1).  

Since the number of components is finite this process must end, and we would 

have an edge (1,0,0),(r, 1,1), r=>2. In the same way we have edges 

(0, 1,0), (1. k, 1) and (0, 0, 1), (1, 1, l). Q.E.D. 

CLAIM 4. With the conclusion of  Claims 1 and 2, if (3, 1, 2), (0, 1,0) or 

(3,2, 1),(0,0, 1) are not edges, then (3,2,2) is a vertex or (3, 1, 1) is a vertex. 

PROOF. Recall that every point P in the graph is an integral combination of 

any 3 vertexes which form a triangle with det = _+ 1, such that P is in the interior 

of that triangle. Any point P is the integral sum of any two primes where P lies 

on their line segment, even if the line segment is not in the graph. 

We shall list the low weight points: 

1: (1,0,0) (0 ,1 ,0) (0 ,0 ,1)  

2: None 

3: (1, 1, 1) 

4: (2, 1, 1) (1,2, 1) (1, 1,2) 

5: (3,1,1) (1,3,1) (1,1,3) (2,2,1) (2, 1,2) (1,2,2) 

Assume that (3, 2, 2) is not a vertex. Then either it is on an edge or it is an 

internal point of some primitive triangle T. If it is an internal point of some T 

then it is the sum of its 3 vertexes, weight (3, 2, 2) = 7. So, a vertex of weight 4 or 

3 cannot be one of them because any other two vertexes have a total weight of 2 
or greater than 4 or 5 (respectively). A vertex of weight 5 cannot be one of them 

because any triangle with a weight 5 vertex and total weight 7 is not primitive. 

Therefore (3, 2, 2) is on an edge. A priori, by pure arithmetic, the possible weights 
for the end vertexes of that edge are the following: 5 + 2, 5 + 2.1, 4 + 3, 6 + 1. 

We don't have weight 2 vertexes so the first possibility falls. The only possible 

5+2.1  arrangement is (1 ,2 ,2)+2(1,0 ,0) ,  but (1,0,0),(1,2,2) is not an edge 

((1, 1, 1) is a vertex on it). The only 6 + 1 possibilites are (3, 1,2) + (0, 1, 0) and 

(3, 2, 1)+ (0, 0, 1) which are excluded by assumptions. We are left with the 4 + 3 

possibility which is (2, 1, 1) + (1, 1, 1). In that case (2, 1, 1), (1, 1, 1) is an edge. 

(1, 0,0), (1, 1, 1) is not complete in F so (1,0,0), (2, 1, 1) is not complete. Look 

at (3, 1, 1). It is of weight 5. Therefore it cannot be an internal point of a 

• primitive. If it is on an edge its end vertexes must be (1,0, 0) and (2, 1, 1) or 

(1,0, 0) and (1, 1, 1). This is impossible because (1,0, 0), (2, 1, 1) is not complete in 

F. So (3, 1, 1) is a vertex. Q.E.D. 
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By Claims 1, 2, 4 and omitting mirror images we know that F contains one of 

the following subsets. 
(a) (b) (c) 

,i \ \ / \ 

\ 
, , , ' \  (3,1,2).(1,1,1) \ 

(3,2,2), , \ (2,1, I) , , /"  ' ( 2 1 1 , 1 ) ~ ' ~  "\ 
(2,1,1) \\ (3,1,1)" 

So if (3, 1,2), (0, 1,0) i sno t  an edge we have 3 vertexes on (1,0,0), (1, l, 1). 

We shall use the following lemma: 

LEMMA (proof based on Section II, Proposition 2, is omitted). Let F be a 

Farey graph. Let P1, P2, P3 be vertexes of F such that A = A(PI, P2, P3) is not a 

subtriangle of F, PI, P3 is in F, P2P3 ~ [ F I but not necessarily primitive, P~ + P2 is a 

vertex of F, and there is another vertex of the type aP~ + tiP2, a, fl >= O. Assume 

that there is a vertex A E interior of A, there is at most one more vertex in F, and 

there is an edge A B  that crosses the line segment between P~ and P2. Then there are 

two prime vertexes Q~ and Q2, Qi = a~P1 + ~P2 and a vertex P3 + eP2, e ----- 0 ,  1 
such that P3 + eP2, O, are edges, and Q~ + Qz + P3 + eP: is a vertex ; and A is in 

the interior of A(QI, Q2,1°3 + eP2). 

We shall discuss three separate cases. 

Case 1. There is no cross line F that starts in one of the coordinate vertexes 

In that case F does not contain (c). 
Let F be a cross line and A, B its two end vertexes. Together with the 3 

vertexes that we have mentioned before in the (1,0, 0), (1, 1, 1) line, we already 
have 5 vertexes. Obviously the 4-vertex case will not appear. We want to find out 
what are the possible values for A and B. We shall show that there is only one 

possibility. 
By Claim 3 and the fact that there are no more vertexes, if (3, 2, 2) is a vertex 

(1, 0, 0), (2,-1, 1) is an edge, and if (3, 1, 1) is a vertex (1, 0, 0), (3, 1, 1) is an edge. So 

F contains one of the following subsets: 

(a) (b) 
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A is in the triangle A = A((I,0,0), (1,1,1), (0,0,1)). 

We apply the lemma with (1,0,0), (1, 1,1), (0,0, 1), A as P1, P2, P3, A. Since 

there are no more vertexes but the mentioned ones e must be 0 and Ol and 02 

are two primes out of those we know about on (1,0,0),(1,1,1). A is then 

O, + 02+(0 ,0 ,1 ) .  
Applying this argument we have the following possible values for Q1, Q2 and 

A :  

I f  (3, 2, 2) is a vertex (see subgraph (a)) 

Ox = (1, o, o) 

Ox = (2,1, 1) 

Q, = (2, 1, 1) 

Ol = (3,2,2) 

/ f  (3, 1, 1) is a vertex (see subgraph (b)) 

O l = ( 1 , 0 , 0 )  O2=(1 ,1 ,1 )  

Qx = (1, 0, 0) Q2 = (2,1,1) 

0 , = ( 3 , 1 , 1 )  0 2 = ( 2 , 1 , 1 )  

Q2 = (1,1,1) A = (2, 1,2) 

Q: = (3,2,2) A = (5,3,4) 

Q2 = (1,1,1) A = (3,2,3) 

Qz = (1, 1,1) A = (4,3,4) 

A = (2, 1,2) 

A = (3, 1,2) 

A =(5 ,2 ,3 )  

By changing (0, 0, 1) to (0, 1, 0) we get a symmetrical situation for B. B is in the 

triangle A((1,0, 0), (1, 1, 1), (0, 1,0)). 

As for A we apply the lemma on (1, 0,0), (1, 1, 1), (0, 1,0), B and we get values 
for O', and the following possible values for B (changing the second and third 
entries in the A values): 

I f  (3, 2, 2) is a vertex (see subgraph (a)) 

B = (2,2,  1) 

B = (5,4, 3) 

B =(3 ,3 ,2 )  

B = (4,4,3) 

I f  (3, 1, 1) is a vertex (see subgraph (b)) 

B = ( 2 , 2 , 1 )  

B = (3 ,2 ,1 )  

B = (5,3,2) 
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There are primitive edges AB,  Q~(0,0,1), Q'~(0,1,0). If A B  crosses 

(1,0,0),(1, 1, 1) between the vertexes RI and R2 then the triangles A(A, B, R~) 

must be primitve. 

I f  (3, 2, 2) is a vertex, all the cases but A = (2, 1, 2), B = (2, 2, 1) will fall: 

A = (5, 3, 4) B = (4, 4, 3) because A B  then crosses Qz, (0, 0, 0). 

A = (5, 3, 4) B = (3, 3, 2) because A and B are not primes. 

A = (4, 3, 4) or A = (3, 2, 3) B = (5, 4, 3) for symmetrical reasons. 

A = (5, 3, 4) and any other B because (2, 1, 1) is one of the R~ and 

det B ¢ _+ 1. 
211 

B = (5, 4, 3) and any other A for symmetrical reasons. 

The remaining cases will fall because then 

det B / + 1 
322 

and (3,2,2) is one of the R~ then. 

I f  (3, 1, 1) is a vertex the following cases will fall: 

A =(5 ,2 ,3 )  B =(5 ,3 ,2 )  or B =(3,2 ,1) .  (2,1,1) is then R2 and 

A 
det B / _+ 1. 

R2 

A = (5, 2, 3) B = (2, 2, 1). (3, 1, 1) is then R1 and 

det B / -+ 1. 
R1 

B = (5, 3, 2) and any A for symmetrical reasons. 

A = (2, 1, 2) B = (2, 2, 1) because A B  then crosses (2, 1, 1), (1, 1, 1). 

The remaining cases fall because then A B  crosses 02, (0, 0, 1). 

We are left with the possibility (3,2,2) is a vertex. A = (2, 1,2) and B = 

(2,2, 1). The vertexes of F are then those that appear in Fig. 1. 

By the preceding arguments (0,1,0),(1,1,1) (0,0,1),(1,1,1) and 
(1, 0, 0), (2, 1, 1) are primitive. So is the line AB.  See Fig. 2. (3, 2, 2) and (1, 1, 1) 

must then be the other vertexes of the two primitive triangles that lean on AB.  
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Fig. 1. Fig. 2. Fig. 3. 

See Fig. 3. By the Graphical Algorithm (see Section I) the rest of the graph must 
then be as in F2. 

Case 2. (3, 1, 2), (0, 1,0) is an edge 

Look at (2, 1,2). Its weight is 5. If (2, 1,2) was an internal point of some 
primitive triangle T, by weight consideration it must be 2~((1, 1,1), (1,0,0), 

(0,0,1)). But this triangle is not primitive because (3, 1,2) is a vertex. The 

possible weight equation for a weight-5 point on an edge is 3 + 2.1 or 4 + 1. There 

are no weight-3 points and weight-1 points that will give us the 3 + 2.1 formula. 

So we are left with the 4 + 1 equation. The possible end vertexes for such an edge 

are (2, 1, 1), (0,0, 1) or (1, 1,2), (1,0,0) but any of these edges would cross 
(3, 1,2), (0, 1,0) which is an edge. So (2, 1,2) must be a vertex and we have the 
following subgraph of F: 

1,2) 
• \ 

(3,1,2) .(1,1,1) ' \  

If  we have only 4 vertexes in F then by Claim 3 we must have 

We draw the two triangles 2~((3, 1, 2), (0, 1,0), Ri), i = 1,2, 
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\\ 

and complete the graph uniquely by the Graphical Algorithm to get F~ 

Fl = 
~ i  '\., 

f f  we have  5 vertexes the fifth one must be a sum of 2 or 3 prime vertexes that 

includes it in the line segment or the triangle formed by them. Because, if not, 

the appropriate sum would be on an edge in a triangle with vertex (our fifth 

vertex) of higher weight. 

So F has the four vertexes we started with, and a fifth one according to the 

above requirement. Draw the edges (again by Claim 3 and by the Graphical 

Algorithm of Section I). We then find out that F includes FI. Furthermore, F is 

obtained from F1 by blowing up a triangle or an edge (adding its sum and the 

connecting edges). So F is either F~ (if we blow up something away from the 

(3, 1,2),(0, 1,0) line) or one of F .  to FI6 if we blow up something near to it. 

REMARK. F2 or F3 does not include F~ as a subgraph. 

Case  3. There is a cross line F that  starts in E z  or E y  

Without loss of generality we can assume that F has an end vertex in Ey. The 

case where F is (3, 1, 2), (0, 1,0) was treated before so we shall exclude it from 

this discussion. F then includes subgraph (a) or (b). 

Let A be the other end vertex of F. We are in the situation of the lemma for 

(1,0,0), (1, 1,1), (0,0, 1), (0,1,0) as P~, P2, P3, B. We want to trap A. 

We apply the lemma. Since Ql and Q2 are on (1,0 ,0) , (1 ,1 ,1)we can write 

Q~ = (mr, ni, ni), i = 1,2, mi --> ni, n2= > 1, m~n2 >- _ men1, 

Ol 
___l=det Q2 = m l n 2 -  m2n~ ~ m l n 2 -  m2n~ = l .  

(o,o,1) 
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Let C = Pl q- P2 at- (P3 q- 8P2). By the lemma this is a vertex. Consider the lines 

(0, 1,0), 02 and (0, 1,0), C. If we continue these two lines till they hit (1,0,0), 
(0,0, 1), the first one will hit it closer to (1,0,0) than the second one. This is true 

because 

m = ~  m ~ + m 2 + e  

n2 th + n2 + e + l " 

(This relation comes from rain2 - m2nl = 1, m2 ----> n2, rn2 > 1.) On the other hand 

if we continue (0 ,1 ,0) ,A it hits (1,0,0),(0,0,1) closer to (1,0,0) than the 

continuation of (0, 1,0), 02 so A / C  
The three vertexes on (1,0, 0), (1, 1, 1) together with A and C make 5 vertexes 

so e must equal 0 and therefore C = O~ + 02 + (0,0, 1). The following graph 

includes all the vertexes of F and some of the edges. 

/t'@(1,1, 1) FD/. 
Consider weight(A). It is not of weight 4 because it is not on one of the lines 

that connect the coordinate vertexes to the center. It is not of weight 5 because 

the only weight-5 point in A = A((1,0,0), (1, 1, 1), (0,0, 1)) is (2, 1,2) which is not 

prime to (0, 1,0) while A ,  (0, 1,0) is primitive. It is not of weight 6 because (3, 1,2) 

was excluded and (2, 1,3),(0, 1,0) hits (1, 1, 1), (0,0, 1) which is in the graph. So 

weight(A ) => 7. 
(0, 1,0), A crosses (1,0,0), (1, 1, 1) between the vertexes R, and R_, and each of 

A(A, (0, 1, 0), R,), i = 1,2 is a primitive triangle. 
Look at R~ + R> It is either an internal point of one of those triangles or it is 

on the edge A, (0, 1,0). It cannot be an internal point because then we would 

have: 

w(R~ + R2)>= w ( A  +(0, 1 , 0 ) + R ~ ) = 7 +  1 + w(R~)>~ w(R2 + R2). 

So R I + R 2  is on A,(0,1,0).  
R~ +R2  is either (4,3,3), (5,3,3) or (5,2,2). 

A is the continuation of the line (0, 1 , 0 ) , R , +  R2. By that we have the 

following possible values for A:  

(5, 1,2) (if R~ + R2 = (5, 2, 2)), 

(5, 1, 3), (5, 2, 3) (if R, + R2 = (5, 3, 3)), 

(4, 1,3), (4, 2, 3) (if R~ + R,_ = (4, 3, 3)). 
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(0, 0, 1), O~ and A, (0, 1,0) are edges and therefore cannot cross each other. So, 

for each of the above possible A, O1 must be (1, 0, 0) and 02 must be (1, 1, 1). 

(One can see it immediately by drawing up the alternative edges.) C is therefore 

(2, 1,2). 
In all but for A = (4, 2, 3),-the triangle that leans on (1,0, 0), (0, 0, 1) must have 

A as its third vertex, because any other triangle will cross one of the existing 

edges. 

The triangle that leans on A,(0,0,  1) must have (2, 1,2) as a third vertex, for 

similar reasons. But 

A A 
det 100 or det 

001 001 

does not equal +--1. 

So we are left with (4, 2, 3) as an only possibility. For A = (4, 2, 3), Rt is (3, 2, 2) 

and R2 is (1, 1, 1). We have the following subset of F: 

,/(2,1,2)1 '~ 
(4,2,3)~ O,t~t) \, 

,' (3, Z: 2 )f~-...~'-.... \ 

Following the Graphical Algorithm we see that the triangle that leans on 

(1,0,0),(0,0, 1) must have (2, 1,2) as a third vertex. 

//J/q~ 

/ f  

Following the Graphical Algorithm we can add more edges to get a Farey 

graph that turns out to be F3. 
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Q.E.D. 

Appendix 

The results given above seem to provide a basis for a conjecture that the 

generic toroidal graph is not directly factorizable. For any Farey graph F, let 

c(F) be the number of collapsible vertices, and let t(F) be the total number of 

vertices added to the basic triangle. The above results would lead us to 

conjecture tliat for each increase of one in t(F) we can expect the introduction of 

new non-factorizable graphs with c(F)= O. 

Now let us build a "family tree" for Farey graphs. For simplicity we restrict 

our attention to graphs of the type discussed in this work, with no added exterior 

vertices, and we consider only graph types - -  equivalence classes of graphs 

under the six symmetry operations on the basic triangle. A graph type IF] with 

n = t(F) added vertices will have s(F) = 1 + 2n simplices and i(F) = 3n internal 

edges. We will call a graph F' obtained from F by blowing up one of these 

simptices or edges a "direct descendant". Thus F will have 1 +5n direct 

descendants F', and each F' will have c(F') direct ancestors, obtained by 
collapsing each of the c (F) collapsible points in turn. If F is symmetric, slightly 

less than half of the F' will be redundant, and some of F' may have redundant 

ancestors, i.e. two ancestors belonging to the same graph type. However, in the 

long run these symmetry effects are minor, and we will ignore them. 

Each blowing-up adds one new collapsible point, and may or may not interfere 

with the collapsibility of one or more previously collapsible vertices. If the 
collapsible vertex P was the blowing-up of a simplex, then a further blowing-up 

of any of three new simplices or three new edges will prevent the blowing down 

of P. If P was obtained by blowing-up an edge e between two triangles A and A', 

then blowing-up any of the four new simplices or two halves of e will prevent P 

from being collapsed, and blowing-up other edges of A and A' will sometimes 

have the same effect. Thus, ignoring symmetry, there are generally between six 

and ten blowings-up for each collapsible point which leave c(F) fixed, and the 

remaining 1 + 5n blowings-up increase c(F). 
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For graphs with low c(F), 10c(F) will be smaller than 1 + 5n, so the majority 

of the descendant graphs F' will have larger c(F'). Thus the average value of 

c(F) for factorizable graphs will be larger than the average value for non- 

factorizable graphs, by a factor which will depend on the maximal length of a 

chain of ancestor of F, what we might call the length of its pedigree p(F). The 

pedigree of a factorizable graph will be of length t(N) and in general for a 

non-factorizable graph i't will be some number between c(F) and t (F)-4 (since 

t(F)=y provides the first non-factorizable ancestor and all ancestors of a 

non-factorizable graph must be non-factorizable). 

Now consider Table 1, giving the number of graph types for given t(F) and 

c(F). The number of factorizable graphs for given t(F) were determined 

recursively, by constructing the graphs and relying on the geometric intuition of 

the author to notice correspondences among them. The construction for t(F) = 5 
provided a thorough check on the numbers for t(F) = 4, but the exact numbers 

obtained for t(F) = 5 must be regarded as unreliable. They have been rounded 

to the nearest decade. 

The number for the non-factorizable graphs are dependent on the calculations 

made in the main body of this paper. The twenty graphs with c (F) = 1 are all the 

blowings-up of the unique non-factorizable graph, with t(F)= 4. Two of the 

examples with c(F) = 0 are the examples F2 and F3 which do not factor through 

the blowing-up of the point. In addition there are two non-factorizable graphs 

which do factor through the blowing-up of the point, one a trivial embedding of 

F in such a blowing-up, and the second being the well-known minimal toroidai 

example of a non-factorizable morphism. 

Since being factorizable is a dominant trait, i.e. one passed on to every 

descendant, one might at first think that the factorizable graphs will always 

TABLE 1 
Number of graph types for given t (F) and e (F) 

Non-factorizable Factorizable 

t (F)  c (F)  = 0 c (F)  = 1 c (F)  = 1 c (F)  = 2 c (F)  = 3 Total 

1 0 1 0 0 1 
2 0 2 0 0 2 
3 0 10 2 0 12 
4 1 67 33 0 110 
5 4 20 ~ 500 ~ 700 ~ 80 ~ 1300 
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outnumber the non-factorizable graphs. However, if we compare the "birth 
rates" of the two populations, a different picture emerges. 

Ignoring symmetry effects again the relative contribution of a graph F to the 

next generation will be Er[(l+5n)/c(F')], where the sum is taken over all 

immediate descendants F' of F. Since c(F') is close to c(F), the relative 

contribution will vary inversely with c(F). Most immediate descendants of a 

non-factorizable graph are non-factorizable, and its relative contribution is high. 

Since the results in the main body of the paper make it reasonable to suppose 
that new graphs with c(F)= 0 will appear at each stage, we should expect the 
number of non-factorizable graphs to eventually dominate the number of 
factorizable graphs. 
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